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Turbulence-induced rectified flows in rotating fluids
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Laboratory experiments dealing with Reynolds stress gradients in shear-free turbulence
in homogeneous rotating fluids were conducted to better understand associated
physical phenomena. The study was motivated by possible applications to the oceanic
environment where such Reynolds stress gradients are ubiquitous (e.g. in the vicinity
of the continental shelf break, where turbulence decays away from the boundary). The
turbulence was generated by vertical oscillations of a circular shaft with O-ring surface
roughness elements ; the oscillation axis coincided with the axis of symmetry of the
cylindrical test cell.

In the absence of background rotation, the turbulence is strong in the immediate
vicinity of the shaft surface and decays with the radial distance, r. The turbulence in
the boundary layer is such that u

r
C uθ Cw, where u

r
, uθ, w are the radial, azimuthal

and vertical r.m.s. velocity components, respectively. These velocity components are
found to be proportional to Sω, where S and ω are the stroke and frequency of the shaft
oscillations, respectively, i.e. much the same as for the case of oscillating-grid
turbulence, which has been studied extensively.

When background rotation is present, the steady-state turbulent intensity close to
the shaft is similar to that of the non-rotating experiments. Away from the shaft, in the
central portion of the test cell, large-scale motions containing randomly distributed
cyclonic and anticyclonic vortices are developed owing to small local Rossby numbers.
In the vicinity of the shaft, a rectified anticyclonic flow Uθ is observed. The magnitude
of Uθ is found to be proportional to the characteristic r.m.s. turbulence velocity u, but
independent of the rate of background rotation.

Consideration of the equations of motion shows that mean flows should not be
expected if background rotation is absent. With rotation, however, the equations
indicate that the turbulent stresses can initiate, further develop and then maintain a
mean anticyclonic (rectified) flow around the cylinder; the azimuthal momentum
equation is shown to play a critical role in the generation of the mean anticyclonic flow.

1. Introduction

Rectified currents, defined as mean flows resulting from time-dependent background
forcing, are of importance for geophysical flows because they may influence the
movement of aquatic biota and the transport of suspended materials such as pollutants
(see, for example, Plumb & McEwan 1978). It has been well documented that
background rotation plays a decisive role in the flow rectification process in the vicinity
of topographic features such as (i) seamounts (Genin, Noble & Lonsdale 1989; Eriksen
1991; Boyer et al. 1991; Zhang & Boyer 1993), (ii) continental shelf breaks and banks
(Zimmerman 1978; Butman et al. 1982; Maas & Zimmerman 1989a, b ; Garreau &
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Maze! 1992; Chen & Beardsley 1995) or (iii) along vertical boundaries (Zhang et al.
1993, 1994). These studies focused on cases where the forcing scale of the fluid system
(e.g. the tidal excursion or the characteristic scale of the topography) is much larger
than the characteristic scale of geostrophic turbulence. Holloway (1987), however,
pointed out that rectified currents can result from a complete spectrum of motions
including, for example, long- and short-period wind effects. Bretherton & Haidvogel
(1976) conducted numerical experiments on turbulence above randomly distributed
topographic features in a rotating system. They found that the resulting flows were
organized in such a way that anticyclonic mean currents were trapped above elevated
topographies, while cyclonic motions were limited within basins. The forcing fields
considered by Bretherton & Haidvogel (1976) were random but still of large scale, i.e.
the Rossby number of the motion field, based on the velocity scale of the random flow
field and the characteristic length of the topographic features, was much less than unity.

Laboratory experiments on small-scale rotating turbulence have been considered by,
among others, Bretherton & Turner (1968), McEwan (1973, 1976), Ibbetson & Tritton
(1975), Collin de Verdiere (1980), Hopfinger, Browand & Gagne (1982), Dickinson &
Long (1983) and Bidokhti & Tritton (1992). One characteristic feature identified by
these investigators of rotating turbulence is the generation of large-scale coherent
structures by small-scale forcing, and this phenomenon is not typical in the absence of
the background rotation. McEwan (1973, 1976) argued that, because of the mixing of
absolute angular momentum relative to an inertial system, a rotating turbulent flow
tends to develop cyclonic vortices. Hopfinger et al. (1982) and Dickinson & Long
(1983), among others, found that away from a horizontal grid oscillating vertically, the
turbulence intensity decreases, while length scales of the motion increase. They also
reported that an initially nearly isotropic turbulent flow can organize into large-scale
cyclonic and anticyclonic vortices, but they did not study or report on the generation
of mean currents. The generation of coherent structures in rotating three-dimensional
turbulence has also been reported by Bartello, Me! tais & Lesieur (1994) and Me! tais et
al. (1995) using direct numerical simulation. Bardina, Ferziger & Rogallo (1985) also
conducted numerical experiments on homogeneous turbulence in rotating homo-
geneous fluids. They found that large-scale motions take the form of inertial waves,
and the energy cascade to the smaller scale can be greatly reduced owing to the
presence of rotation.

The present communication focuses on obtaining a better understanding of flow
rectification in rotating turbulent flows with zero mean shear. In particular, the
physical system to be considered is given schematically in figure 1. A cylindrical test cell
containing a rigid lid and filled with a homogeneous incompressible fluid rotates
uniformly about a vertical axis. Turbulence is generated by an oscillating vertical shaft
fitted with roughness elements. It is desired to investigate the nature of the turbulent
and mean motion fields developed. For comparison purposes, investigations of the
non-rotating case are also of interest.

We assume at the outset that turbulence is generated in the vicinity of the roughness
elements mainly due to flow separation around them. Assuming that the test cell is
sufficiently large, it is reasonable to assume that ¥}¥θ¯ 0 and away from the top and
bottom boundaries ¥}¥z¯ 0, where (r, θ, z) are the cylindrical coordinates shown on
figure 1. Considering the purely oscillatory nature of the forcing, one expects that no
mean velocity would be forced in the vicinity of the shaft. As will be shown below,
however, in the presence of background rotation, a mean flow is generated owing to
nonlinear effects, i.e. via the gradients of Reynolds stresses. Such a mean flow is shown
not to be expected and, in fact, is not found in corresponding non-rotating flows.
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F 1. Schematic of the experimental facility.

The paper is organized as follows. A theoretical discussion concerning the physical
mechanisms at work in the flow rectification process is given in §2. Section 3 describes
the laboratory experimental apparatus and various observation and measurement
techniques employed. The experimental results are discussed in §4, while concluding
remarks and a brief discussion are given in §5.

2. Theoretical considerations

The generation of mean (rectified) flows in rotating fluids by small-scale motions has
been discussed by several authors. Scorer (1965, 1966) was the first to point out that
small-scale fluctuations may lead to large-scale mean swirls, support for which can be
seen in the experiments of Gough & Lynden-Bell (1968), Bretherton & Turner (1968),
McEwan (1973, 1976), Hopfinger et al. (1982) and Dickinson & Long (1983), among
others. A number of mechanisms have been proposed to describe the generation of
mean flow by small-scale forcing in rotating flows: some possibilities include the effects
of angular momentum mixing (Bretherton & Turner 1968) and vorticity expulsion
(Gough & Lynden-Bell 1968). So far no definitive mechanism has been identified and,
in what follows, we propose a plausible mechanism in the context of the present
experiments. This mechanism may well be embedded in those proposed previously, but
an explicit exposition of the proposed mechanism is desirable here.

Consider an axisymmetrical geometry, as shown schematically in figure 1. For
simplicity, assume that the turbulence is generated at the rough boundary of an
oscillating shaft, and then diffuses away into the outer flow. Assume that any mean
flow so generated has velocity components (U

r
,Uθ,W ). The incompressibility condition

requires
¥U

r

¥r


U
r

r


1

r

¥Uθ

¥θ


¥W
¥z

¯ 0, (1)
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or, based on the assumptions ¥}¥θ¯ 0 and ¥}¥z¯ 0,

1
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r
, (2)

where F(t) is to be determined. Considering that U
r
¯ 0 at r¯ r

!
k

R
, where r

!
is the

radius of the oscillating cylinder and k
R

is a mean equivalent roughness, we conclude
that U

r
¯ 0 everywhere, for this special configuration. Because W is independent of z

and equal to zero at the test cell floor and confining rigid lid, W¯ 0 everywhere.
The momentum equations in the radial, azimuthal and vertical directions can be

written as
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f is the Coriolis parameter, ρ is the density, P is the mean pressure from which
gravitational and centrifugal effects associated with the system rotation have been
subtracted, ν is the kinematic viscosity, u!

r
, u!θ and w« are the velocity fluctuations in the

(r, θ, z)-directions and overbars denote averaged quantities.
Neglecting viscous effects, assuming ¥}¥z¯ ¥}¥θ¯ 0, and using the results

U
r
¯W¯ 0, (3)–(5) can be written as
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respectively.
First, consider the case of no rotation, i.e. f¯ 0. Symmetry considerations imply

that, for this case, the term u!
r
u!θ in (7) must be identically zero for all times. Because

Uθ(r, t¯ 0)¯ 0, this implies from (7) that

Uθ(r, t)¯ 0 (9)
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F 2. Schematic diagram illustrating the tendency for the Reynolds stress u!
r
u!θ ! 0 for the

present physical system.

and from (6) that
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i.e. the Reynolds stresses are supported by the radial pressure gradient. Some time after
the initiation of boundary-induced turbulence, the steady state described by (10) is
expected to be reached. By similar arguments as for u!

r
u!θ, the term u!

r
w«¯ 0 and thus

relation (8) is also satisfied.
Now consider the case where background rotation is present. Upon initiation of the

shaft oscillations, the turbulent front propagates outwards, i.e. the turbulence
produced by the shaft diffuses radially. During this phase, the frontal region is sharp,
and it is possible to hypothesize that

) ¥¥r u!
r
u!θ)( 2 )u!

r
u!θ

r ) ; (11)

support for this inequality will be given below. For the purpose of illustrating the
mechanism that comes into play in the generation of a mean flow, we combine (11) and
(7) to yield

¥Uθ

¥t
E®

¥
¥r

u!
r
u!θ, (12)

which shows that the sign and spatial characteristics of u!
r
u!θ are major factors

governing the magnitude and the direction of the rectified flow.
To establish the sign of u!

r
u!θ, consider the schematic diagram of the turbulent front

as given in figure 2(a, b). For f" 0, a parcel initially at position A moving radially
outward with velocity u!

r
, is subjected to a Coriolis force fu!

r
which in turn deflects the

parcel in the direction shown towards location B (see figure 2a). Consequently a
negative u!θ is to be expected for a positive u!

r
. On the other hand, a fluid parcel initially

at B moving with a negative velocity u!
r
, is expected to experience a positive u!θ owing

to the Coriolis force fu!
r
in the direction shown in figure 2(b). Thus considering both
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positive and negative u!
r
, one expects u!

r
u!θ ! 0 for a counterclockwise background

rotation. Similarly, the consideration of displacements in the positive and negative θ-
directions leads to u!

r
u!θ " 0. Given, however, that the turbulent diffusion outward from

the source during the flow development phase creates a forward bias for the particle
displacements, one may argue that the contributions from the radial displacements
dominate the Reynolds stress, and hence u!

r
u!θ ! 0.

With regard to the spatial distribution of u!
r
u!θ, one may hypothesize that ru!

r
u!θr

decreases with increasing r. This follows from the fact that both u
r
(¯ u!#

r

"/#) and
uθ(¯ u!#θ

"/#) decrease with r and the correlation coefficient between u!
r

and u!θ remains
essentially unchanged with r.† (As discussed before, in the absence of rotation, this
correlation coefficient is approximately zero.) Therefore ¥u!

r
u!θ}¥r is positive in the

vicinity of the turbulent front. One thus expects that ¥Uθ}¥t! 0 in (12), and a negative
Uθ (anticyclonic) is generated.

At large times, a steady-state flow distribution is expected; taking ¥Uθ}¥t¯ 0 owing
to the assumption of a steady state, one obtains from (7) that

®u!
r
u!θ £ 1}r#. (13)

If the correlation coefficient between u
r
and uθ is constant as discussed above, then

u
r
£ 1}r and uθ £ 1}r, (14)

as observed in the present experiments. Further, before the steady-state Reynolds stress
gradients are established, the stresses at the frontal region are expected to show faster
spatial decay rates, say ®u!

r
u!θ £ 1}rm, with m" 2. This argument ensures that the

inequality (11) is satisfied during the transient state of the flow.
At this juncture, it is useful to comment on the magnitude of the steady rectified flow

generated due to the above mechanism. If the fluid is at rest relative to either a non-
rotating or a rotating observer, the radial pressure gradient must vanish, i.e. ¥P}¥r¯ 0.
When the agitations are started, it is expected that ¥P}¥r1 0, because there is no
physical reason why that pressure gradient should remain zero. As discussed before,
when there is no rotation, Uθ ¯ 0, and the radial pressure gradient is in balance with
the Reynolds stress gradient according to (10) but, when rotation is added, the terms
on the left-hand side of (6) also can play a dominant role in the balance of radial
momentum; Uθ can grow according to (12), until a steady state is achieved. If it is
assumed that Uθ is a key player in the steady radial momentum balance in the presence
of rotation, then (6) implies that the maximum ¥P}¥r should, at most, be of the order
of ρu#}η where u is the characteristic r.m.s. velocity uC u!#

r

"/# C u!#θ
"/# Cw«#"/# and η is the

thickness of the turbulent boundary layer. Dickinson & Long (1983) and Hopfinger
et al. (1982) found that η surrounding a vertically oscillating cylinder, such as
considered herein, is given by

η¯β u}f, (15)

where β is a constant; this condition is synonymous with the turbulent Rossby number
within the boundary layer being of order unity.

Using (15) and recognizing that ¥P}¥r is at most of order ρu#}η, it is possible to
obtain a scaling for uθ from relation (6). If the radius of the oscillating cylinder is of
the same order as the boundary layer thickness, as is the case in the present

† Dimensional arguments indicate that this correlation coefficient is a function of the turbulence
Rossby number Ro¯ u}f l, where l is the characteristic length scale of the turbulence. Since in
rotationally affected turbulent flows Ro is a constant (Hopfinger et al. 1982), the correlation
coefficient is expected to be a constant.
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experiments, then we can write rC η, and hence all of the terms in (6) have a
comparable magnitude, leading one to conclude that

Uθ C u, (16)

i.e. the rectified azimuthal velocity uθ scales as the characteristic turbulence intensity,
independent of the background rotation! (This prediction is supported by the
experimental results discussed in §4.2.2). It should also be pointed out that if r( η then
rC r

!
and, if one hypothesizes that Uθ # u, then it is possible to obtain the same scaling

as (16) ; here the first term on the left and third and fourth terms on the right in (6)
become negligible.

In summary, the equations of motion clearly indicate that no mean flow should be
expected for the non-rotating case. For the rotating case, however, the Reynolds
stresses in the azimuthal momentum equation tend to initiate a clockwise (anticyclonic)
mean flow. The anticyclonic flow so generated eventually achieves a steady state. If the
radial momentum balance in the steady state is dominated by the azimuthal mean flow,
then the velocity of the rectified flow is expected to be proportional to the r.m.s.
turbulence intensity.

Finally, it should be noted that the above theoretical inferences are in consonance
with the angular momentum mixing arguments advanced by Bretherton & Turner
(1968). The absolute angular momentum M

!
can be defined as

M
!
¯ ("

#
rfUθ) r.

Relation (7) can be rearranged into
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¥t
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¥
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!
)¯®
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r

¥
¥r

[r(ru!
r
u!θ)]. (17)

Note that the term ¥(rUθ)}¥t can be considered as the rate of change of the mean
angular momentum for a non-rotating observer. The term ru!

r
u!θ can thus be interpreted

as the mean radial flux of angular momentum (see Bretherton & Turner 1968) because

ru!
r
u!θ ¯ ru!

r
(u!θUθ"

#
rf ), (18)

where the terms in the bracket represents the absolute azimuthal velocity of a fluid
parcel relative to the non-rotating system. Bretherton & Turner (1968) found that the
right-hand side of (18) has a negative value, which is in agreement with our earlier
determination that u!

r
u!θ ! 0.

3. Experimental facilities and measurement techniques

The experiments were conducted in a cylindrical Plexiglas tank, having a radius
R¯ 30 cm and height H¯ 50 cm, respectively (see figure 1). The cylindrical tank is
encased within a rectangular Plexiglas tank to prevent optical distortion in flow
visualization experiments. A hollow circular Plexiglas shaft with outer radius
r
!
¯ 4.45 cm was mounted along the tank axis. The shaft surface, over a 45 cm length,

was rapped with plastic-coated copper wires of diameter d¯ 0.5 cm in an O-ring shape
with a spacing h¯ 2 cm. These coated wires served as the roughness elements for
generating turbulence in the vicinity of the shaft. The top of the shaft was connected
to a linear bearing and was driven by a DC motor, thus forcing the shaft to oscillate
vertically in a sinusoidal manner. The stroke S (twice the amplitude) and the oscillation
frequency ω could be varied in the ranges 0%S% 3.4 cm and 3%ω% 25 rad s−".
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Parameter Description Values

H Depth of fluid 50 cm
R Radius of tank 30 cm
ν Kinematic viscosity 0.01 cm# s−"
r
!

Shaft radius 4.45 cm
d Width of roughness elements 0.5 cm
h Vertical spacing of O-ring roughness 2.0 cm
S Stroke of shaft oscillation 1.0®3.4 cm
ω Frequency of shaft oscillation 3.1–25.0 rad s−"
f Coriolis parameter 0–1.6 rad s−"
Ro

t
Temporal Rossby number 2–120 and ¢

Re
s

Shaft Reynolds number 150–4000

T 1. Experimental parameters

Defining a temporal Rossby number Ro
t
¯ω}f and a Reynolds number Re

s
¯ dωS}ν

for the shaft oscillations, the experiments were carried out in the ranges 2#Ro
t
# 120

(as well as Ro
t
¯¢ for the non-rotating experiments) and 150#Re

s
# 4000.

The tank, shaft and driving mechanism were mounted on a turntable capable of
rotating at a constant rate up to f}2¯ 1.0 rad s−". The working fluid was water and the
room temperature was about 25 °C. Secondary motions induced near the bottom of the
shaft were negligible (this will be discussed subsequently). In order to facilitate flow
diagnostics, the upper surface of the fluid was covered by a Plexiglas plate. Detailed
dimensions of the facility and the ranges of the parameters investigated are given in
table 1.

Turbulent and mean velocities were measured by using a two-component fibre optics
laser-Doppler anemometer (LDA), mounted on the turntable ; the LDA can be
operated in either forward- or backward-scatter modes. The forward-scatter mode of
the LDA was used and the resulting signals were stored in a PC for later analysis. The
sampling times were varied between 50 s and 120 s, with typically 3000–7500 samples
recorded at a given location.

Four flow visualization techniques were used: dye tracers, the electrolytic
precipitation method (Honji, Taneda & Tatsuno 1980), neutrally buoyant particles and
rheoscopic particles. The electrolytic precipitation technique is used on the observation
that when a small DC voltage (C 5 V) is applied between a solder cathode and, say,
a brass anode in an electrically conducting liquid, a white colloidal cloud is released
from the solder. In the experiments, a small amount of salt was added to the water to
improve its electrical conductivity. The neutrally buoyant particles used were
polystyrene beads of nominal diameter 0.5 mm and approximate density 1.043
(10)$ kg m−# ; these particles remained suspended in water with its density adjusted by
adding an appropriate amount of salt. Rheoscopic particles align with the local
velocity shear so as to produce bright and dark structure (patterns). This method was
found to be useful in identifying the approximate boundary between the turbulent
boundary layer region near the shaft and the outer, seemingly laminar, motion field.
Light sheets of thickness 0.5–1.0 cm were employed for illumination in all of the above
flow visualization techniques. Two 35 mm cameras, attached to the rotating frame,
were used to record the flow patterns. For the experiments with neutrally buoyant
particles, the light sheets were ‘chopped’ appropriately to yield single dot-dash particle
streak patterns, with the flow direction being from dot to dash. Both the light sheets
and cameras were controlled using a computer.
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4. Experimental results

4.1. Turbulence without background rotation

Upon initiation of the shaft oscillations in the non-rotating experiments, vortices were
generated in the immediate vicinity of the roughness elements mainly due to the flow
separation at these elements. These vortices then interacted with each other and
quickly moved away from the shaft, forming a turbulent front. The front then
propagated radially outward. From particle streak observations it was apparent that
the turbulence intensity decreases with increasing distance from the shaft. At large
times, the flow field reached a quasi-steady state, i.e. the turbulence intensity at a fixed
location did not show appreciable variation with time. In a series of non-rotating and
rotating laboratory experiments, Dickinson & Long (1983) reported on turbulence
generated by a vertically oscillating rod with roughness elements. If we use the radial
turbulence propagation speed obtained by these investigators, it is estimated that
approximately five minutes should be allowed in the present experiments to achieve a
quasi-steady state. On this basis, the measurements were started fifteen minutes after
the initiation of the shaft oscillation. Velocity measurements were made after the
system reached this quasi-steady state.

As mentioned above, turbulence in the immediate vicinity of the oscillating shaft is
generated by a complex vortex shedding and interaction process. Measurements were
made to determine whether the initial vortical motions were similar to the wake
structure of a cylinder subjected to a uniform approach flow, as is evident from the
oscillating-grid experiments of Hopfinger & Toly (1976). At a fixed radial distance (i.e.
0.5 cm away from the O-ring roughness elements), the velocities were measured for
various S and ω, and autocorrelations were determined. The prominent frequency peak
of an autocorrelation, n, was used to estimate the Strouhal number St¯ nd}Sω, where
d is the width of the O-ring roughness. The measured Strouhal numbers were widely
scattered and varied from 0.1 to 2.0, suggesting that the vortical structure in the
immediate vicinity of the roughness is much different from that obtained in simple
vortex shedding behind a cylinder in a uniform flow. It was apparent that the
turbulence was developed by complex interactions between vortices generated by
neighbouring roughness elements.

Measurements of the turbulence intensity and mean flow were made along a tank
radius at the mid-depth for various S and ω. In the following (u

r
, uθ,w) designate the

r.m.s. velocity fluctuations (u!#
r

"/#, u!#θ
"/#,w«#"/#), respectively. Figure 3 is a plot of the

r.m.s. velocities normalized by Sω versus the dimensionless radial distance
γ¯ (r®r

!
)}d for S¯ 20 cm and ω¯ 24.5 rad s−". The dashed line is the least-squares

fit of a linear function expressed by the relation

(u
r
, uθ,w)

Sω
¯

κ

γ
, (19)

where κ is expected to be a function of S, ω, d and h ; for figure 3, κE 0.024. Note that
for γ# 10, (19) represents the turbulence decay very well. For γ$ 10, the normalized
r.m.s. velocities are approximately constant because of the existence of low-frequency
motions and instrument error (the measured r.m.s. noise level, normalized by Sω, is
approximately 0.005). To compare the results with previous work (e.g. Hopfinger &
Toly 1976), the data are plotted on a log–log graph, which is the insert in figure 3: the
slope for γ# 10 is approximately ®1, i.e. similar to oscillating-grid turbulence. Note
also that u

r
, uθ and w have similar magnitudes.

The dependence of the turbulent intensity on S and ω was also investigated; the
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vertical r.m.s. velocity component was chosen as representative. On physical grounds
it was expected that w}SωC constant so that the data can be presented on a w against
Sω plot (note that this constant depends on the nature of the roughness elements). The
data for a fixed radial location r®r

!
¯ 1.75 cm (γ¯ 3.5) are plotted on figure 4. The

dashed line is a linear regression expressed by

w¯ASωB, (20)
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F 5. Normalized mean velocities versus γ for S¯ 2.0 cm, ω¯ 24.5 rad s−" and for no
background rotation (i.e. f¯ 0 rad s−").

where AE 0.008 and BE 0.3 cm s−". Note that B need not be zero because (20) is
invalid for ω¯ 0; in fact, the flow is turbulent only above a critical value of ω. The
above observations suggest that (i) for the turbulence generated by the oscillating shaft
u
r
C uθ Cw and (ii) the turbulence intensity is linearly dependent on the characteristic

speed of the shaft Sω.
The normalized mean velocities (U

r
,Uθ,W )}Sω are plotted against γ in figure 5 for

the same experiments as for figure 3. The mean velocities, within measurement errors,
are effectively zero, a result in consonance with the theoretical arguments presented in
§2. The estimated error, normalized with Sω, for the time-mean velocities is ³0.005.
These data will be compared below with similar experiments conducted in the presence
of background rotation.

Fernando & De Silva (1993) pointed out that certain secondary mean flows could
be generated by an oscillating grid in non-rotating fluids when the geometry of the
grid is not appropriately constructed, i.e. if the grid produces non-zero Reynolds
stress gradients. Accordingly, in the present experiments, secondary flows can be ex-
pected in the vicinity of the oscillating shaft near the bottom or near the surface
because of locally vertical inhomogeneities in those regions. By introducing rheoscopic
particles into the tank, it was observed that indeed some secondary motions are
generated in these regions, with the secondary motion near the upper surface being
much smaller than that along the tank floor. These secondary motions, however,
were limited to regions # 5 cm from the top surface and tank floor. Thus end effects can
be considered as negligible when considering the velocity field in the central portions of
the fluid. It is concluded that the flow field in the central portions of the tank, say
®20! z! 20 cm, is depth independent and that the measurements at z¯ 0 are rep-
resentative of the motion field throughout the bulk of the fluid column. These same
conclusions on depth independence of the motion were also drawn for the experiments
conducted in the presence of background rotation.
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F 6. (a) Top-view photograph of particle streaks for S¯ 2.0 cm, ω¯ 24.5 rad s−" and
f¯ 1.6 rad s−" ; the exposure time is 4 s. (b) Corresponding interpretive sketch.

4.2. Turbulence in rotating fluids

4.2.1. Qualitati�e description

After the fluid in the test cell reached solid-body rotation (after about one hour), the
shaft oscillations were started. The observations concerning the generation of
turbulence and its propagation away from the shaft surface were similar to those for
non-rotating fluids. The larger the radial distance, the weaker the turbulence and the
larger the motion length scale. At large radial distances, ‘coherent’ large-scale motions
appeared, indicating the importance of background rotation which has a tendency to
transfer energy from small- to large-scale motions. These motions were visualized by
using neutrally buoyant particles.

Figure 6(a) is a particle streak photograph taken at mid-depth of the fluid for
S¯ 2.0 cm, ω¯ 24.5 rad s−" and f¯ 1.6 rad s−". The normalized coordinate γ is indi-
cated on the upper-right of the figure. The thickness of the light sheet is E 1 cm. A
corresponding interpretive sketch is given in figure 6(b), along with an arrow indicating
the rotation direction of the tank. Note on figure 6(a) that the bright croissant-shaped
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F 7. (a) Side-view photograph of particle streaks for the same experiment as in figure 6(a) ;
the exposure time is 4 s. (b) Corresponding interpretive sketch.

spot is the reflection of the light sheet from the shaft surface. The motion direction of
the particle streaks is from dot to dash as mentioned in §3. It can be seen in figure 6(a)
that in the vicinity of the shaft the dot-dash patterns of the particles cannot easily be
identified because the turbulence in the region is intense and three-dimensional and
particles move in and out vertically through the light sheet ; this near-shaft region is
considered as the turbulent boundary layer. Away from the turbulent layer, the motion
is ‘organized’ into large-scale flows, including anticyclonic and cyclonic vortices, as is
evidenced by the dot-dash particle patterns on figure 6(a). The typical speed of the
particles in the large-scale-motion area is C 0.5 cm s−". From sequential photographs,
one observes that the overall structure of the large-scale motion propagates
anticyclonically at a speed of approximately 0.3 cm s−". Taking the typical speed and
length scale of the large-scale motion as 0.5 cm s−" and 10 cm, respectively, the Rossby
number can be estimated as 0.03. Rotation effects are, therefore, of leading-order
importance in the far field. Such large-scale vortices (but not currents) were also
reported by Hopfinger et al. (1982) and Dickinson & Long (1983) in observations made
away from the vertical turbulent boundary layer.

Figure 7(a) is a side-view photograph (with the camera angled slightly downward)
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along the normalized coordinate γ of particle streaks for the same experiment as figure
6(a) ; a corresponding interpretive sketch is given in figure 7(b). The vertical dimension
of the photograph covers the approximate region from 10 cm below to 20 cm above the
mid-depth of the fluid; the horizontal scale of the figure is also indicated. As mentioned
above, corrections were made to minimize optical distortion due to the local curvature
of the tank. The bright vertical band on the right of the photograph is due to light
reflections from the shaft surface. Because the shaft is oscillating and the exposure time
is longer than the shaft oscillation period, the edge of the band is approximately
straight. Again, the motion direction of the particles is from dot to dash. Close
inspection shows that in the vicinity of the shaft (1#γ# 4), the motion appears fully
turbulent. The particle trajectories have no preferred direction, indicating a three-
dimensional motion which is not greatly affected by the background rotation. The
motion field is approximately independent of the position along the cylinder (e.g. the
turbulence intensity does not vary to a great extent), thus supporting the assumption
that ¥}¥z¯ 0 for statistically averaged fields. Away from the turbulent region
(4#γ# 15), the particle streaks continue to show irregular patterns, indicating that the
motion field has a tendency to assume two-dimensionality in the presence of rotation
with the characteristic horizontal length scale appearing to be somewhat larger than
that in the vertical. Further away from the shaft (15#γ# 40), clear dot-dash particle
patterns are observed and, except near the upper and lower boundaries, the horizontal
motion of the fluid dominates the vertical one. This observation is consistent with the
Taylor–Proudman constraint. These large-scale motions away from the shaft are also
random in space and time as ascertained from investigating sequential photographs for
the same experiment (not shown).

To visualize the long-time behaviour of large-scale motions, dye tracers were used.
Figure 8(a–c) is the top-view of sequential photographs of dye streaks released at
t¯ 0 from the locations indicated for S¯ 2.0 cm, ω¯ 13.2 rad s−" and f¯ 1.6 rad s−".
The fluid depth for this particular experiment was 24 cm and the photographs were
taken at mid-depth. This arrangement allows one to have an entire view of the dye
patterns while simultaneously keeping secondary motions, which occur near the test
cell surface and floor, negligible. Note that on these photographs the inner ‘heavy’
bright circle is the light reflection from the shaft surface, and the outer ‘ light ’ bright
circle is the reflection from the inner edge of the top Plexiglas plate. The dye release
mechanism utilized a copper wire, of 0.1 cm diameter, stretched horizontally along a
tank radius. To provide concentrated spots for dye release, small solder lumps were
placed at selected locations along the wire. To facilitate discussions of the dye patterns,
interpretive sketches of the corresponding dye images are given on the right in
figure 8.

Figure 8(a) is a photograph taken 30 s after the dye tracer was released. Dye tracer
patch α was released at t¯ 0 and has already been advected anticyclonically and is now
approaching the highly turbulent region in the vicinity of the shaft where the dye
pattern is not coherent. Dye tracer patch β, on the other hand, has been released at the
time immediately preceding the photograph. It displays a meandering pattern and also
advects anticyclonically. Note that dye tracer R, far away from the shaft and on the
right of the picture, is a residual tracer from a previous experiment carried out under
similar conditions. Although, the presence of patch R is rather fortuitous, it provides
some information on the flow far away from the shaft.

In figure 8(b), at t¯ 90 s, dye-tracer patch α has moved to the lower-right of the
shaft and has become mixed and diffused because of boundary turbulence. Also, the
dye-tracer patch β is now in the vicinity of the shaft. Again, one observes that the dye
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F 8. Dye-tracer photographs for S¯ 2.0 cm, ω¯ 13.2 rad s−" and f¯ 1.6 rad s−". The depth of
the water is 24 cm. The tracer release was at t¯ 0 and for (a) t¯ 30 s, (b) 90 s and (c) 180 s. The
exposure time is 1.0 s. The corresponding interpretive sketches are given on the right of the figures.

patterns near the shaft are highly diffused. The diffused dye quickly surrounds the shaft
because of the existence of a mean anticyclonic flow in addition to turbulence. The
width of the dye layer mixed by turbulence is limited. Figure 8(b) shows the release of
a new dye-tracer patch ε. Similar to β in figure 8(a), tracer patch ε advects
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f (rad s−") κ N

0 0.024 0.98
0.2 0.024 0.98
0.3 0.032 0.99
0.5 0.016 0.55
0.8 0.027 0.92
1.0 0.024 0.87
1.2 0.027 0.98
1.4 0.033 0.99
1.6 0.027 0.78

T 2. Data fit of the normalized r.m.s. velocity against γ−" (see relation (19)) for fixed S¯ 2.0 cm,
ω¯ 24.5 rad s−" and various rotation rates. N is the correlation coefficient for the data fit

anticyclonically, displaying a meandering pattern. Residual tracer R continues to be
visible. Note that the patch R drifts only in the θ direction, i.e. the radial mean flow
is effectively zero. During the experiment, similar dye tracer patterns were observed
above and below the mid-plane. These observations indicated that U

r
E 0 is the central

portions of the water column.
In figure 8(c), the time from the initial dye release is 180 s. One observes that α is now

found on the lower-left portion of the shaft and at mid-radius of the test cell ; it has now
become a jelly-fish-like coherent structure. The motion of α suggests that there is not
only an anticyclonic motion around the shaft but also some complex large-scale
motion away from the turbulent boundary layer. This motion includes possible
pinched-off dipole structures, as a result of barotropic instability of the mean motion
around the shaft. Dye-tracer patch β occupies the position previously taken by α. The
structure of β is diffused due to its proximity to the shaft. Dye-tracer patch ε is in the
process of approaching, and moving anticyclonically around, the shaft. Also, newly
released dye-tracer patch δ is forming a cyclonic structure after being advected
downstream. The size of this coherent structure is approximately the same as the cross-
section of the shaft. An approximate mean flow speed at the mid-radius is C 0.3 cm s−"

based on the evolution of α.
In summary, observations based on dye patterns suggest that (i) near the shaft the

motion is fully turbulent, but is embedded in a mean anticylonic flow; (ii) away from
the shaft, in the central portion of the test cell, the motion field consists of random
cyclonic and anticyclonic vortices superimposed on a mean anticyclonic current (it is
emphasized that tracers were sucked into or pinched off from the turbulent boundary
layer randomly in space and time) ; and (iii) near the outer wall of the test cell, the
motion is weak.

4.2.2. Quantitati�e measurements

The mean and r.m.s. velocities and the turbulent boundary layer thickness were
measured for various rotation rates. Measurements of normalized r.m.s. velocities as
a function of γ were made for experiments at fixed S¯ 2.0 cm and ω¯ 24.5 rad s−" ;
f was varied from 0.2 to 1.6 rad s−". Values of κ for various f and the data correlation
coefficients are listed in table 2. It is seen that the coefficient κ of (19) is approximately
constant and does not systematically depend on the rotation rate. Figure 9 shows a plot
of the normalized r.m.s. velocities against γ for S¯ 2.0 cm, ω¯ 24.5 rad s−" and
f¯ 1.0 rad s−". The components u

r
, uθ and w are indicated by different symbols and the
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F 9. Normalized r.m.s. velocities versus γ for S¯ 2.0 cm, ω¯ 24.5 rad s−" and
f¯ 1.0 rad s−". The insert is the log–log plot of the same data.

dashed line is a least-squares fit expressed by (19) with κE 0.024. The insert in figure
9 is a log–log plot of the normalized r.m.s. velocities versus radial distance for the same
data. The solid line represents a slope of ®1. One observes that the r.m.s. velocities for
γ# 8 follow the line with slope ®1, while for γ$ 8, the r.m.s. values show different
behaviour, presumably owing to large-scale motions in the mid-field and noise
contamination. One concludes from the above observations that (i) in the near field,
rotation does not affect the turbulence structure generated by the oscillating shaft and
(ii) u

r
C uθ Cw for the range of parameters considered, even in the presence of

rotation. The 1}r decay of the r.m.s. velocity is consistent with (19) and the
independence of r.m.s. velocities of rotation is expected because of the independence
of u!

r
u!θ of rotation in (13). The maximum Reynolds stress occurs close to the shaft, in

an intense turbulent region where the local Rossby number u}fd(C 10) is much larger
than unity.

Figure 10 is a plot of the normalized mean velocity components (U
r
,Uθ,W )}Sω

against γ for the experiment shown in figure 9. It is observed that the radial and vertical
mean flows are effectively zero (within the error level of ³0.005, normalized on Sω) for
all γ, while the azimuthal component varies from about ®.0.04 to ®0.02, for
0#γ# 6 and approaches zero for γ$ 6; the direction of Uθ is anticyclonic and the
magnitude generally decreases with the radial coordinate. Note that, while the r.m.s.
velocities experience a rapid decay with increasing distance from the boundary in the
vicinity of the shaft (0#γ# 10), the mean velocity Uθ does not vary significantly in
the region 3#γ# 7; see figure 10. This can be attributed to the effective radial
exchange of momentum in that region, where the turbulence tends to distribute the
mean momentum uniformly.

Measurements of the turbulent boundary layer thickness were made by photo-
graphing rheoscopic particle images over the vertical range of zE³5 cm for the
rotating experiments. A vertical light sheet (0.5 cm wide) along a tank radius was
employed to illuminate a vertical section, and side-view photographs of rheoscopic
patterns were thus obtained. In the turbulent region near the shaft, rheoscopic patterns
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F 10. Normalized mean velocities versus γ for the same experiment as in figure 9.
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F 11. Normalized turbulent boundary layer thickness η}d versus Sω}fd for S¯ 2.0 cm
and ω¯ 24.5 rad s−".

are displayed as short random bright and dark images, while in the mid-field, large-
scale bright–dark patterns were observed. The radial distance at which a rheoscopic
image changes quickly from a short- to a large-scale pattern was taken to be the
approximate width of the turbulent region. This measurement is somewhat subjective
and the error (the uncertainty in determining the boundary layer thickness) was
estimated to be of the order of 20%. It was observed that the larger the Coriolis
parameter, other parameters being fixed, the thinner the turbulent boundary layer.
Again, observations of the rheoscopic particle images indicated a boundary layer
structure independent of the vertical coordinate.

Figure 11 is a plot of the normalized turbulent boundary layer thickness η}d against
Sω}fd for experiments carried out with S¯ 2.0 cm and ω¯ 24.5 rad s−". The dashed
line indicates the linear fit to the data, which shows an approximately linear
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F 13. (a) Mean anticyclonic velocity versus Sω at a fixed γ¯ 3.0 for various stroke and Coriolis
parameter values ; (b) mean anticylonic velocity versus r.m.s. velocity for the same experiments as
in (a).

dependence between η}d and Sω}fd. This result is consistent with previous observations
by Dickinson & Long (1983) and Hopfinger et al. (1982) that η¯βu}f (i.e. relation
(15)).

Variations of Uθ for various rotation rates were also considered. Figure 12 is a plot
of the normalized mean azimuthal velocity Uθ}Sω against the inverse temporal Rossby
number Ro−"

t
¯ f}ω. Here the stroke, S¯ 2.0 cm, and the shaft oscillation frequency,

ω¯ 24.5 rad s−", were fixed and Uθ was measured at a given radial location γ¯ 3.0.
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The results suggest that Uθ}Sω is independent of the rotation rate for the ranges of the
parameter values considered, an observation consistent with (16). As f}ωU 0, one
clearly would expect Uθ}SωU 0; unfortunately, it was not possible to investigate
sufficiently small f}ω to study this region of parameter space with the present
experimental facility.

Figure 13(a) depicts a plot of Uθ versus Sω for the set of experimental parameters
given in the legend; the velocities are measured at the radial location γ¯ 3. It is seen
that the anticyclonic rectified current is approximately linearly dependent on Sω. In
order to investigate the relation between the turbulent intensity (i.e. r.m.s. velocities)
and the mean flow in the turbulent boundary layer, a plot of the mean flow Uθ versus
the r.m.s. velocity uθ was constructed. The results are given in figure 13(b) for the same
experimental data as used for figure 13(a) ; the dashed line represents a rough estimate
of the relation between Uθ and uθ. Note that the data show a straight line trend, except
the run with S¯ 1.3 cm, for which the Reynolds number (1000–1500) may have been
too low to yield appreciable turbulence levels. Thus, we may expect, on average, the
mean velocities to be approximately 20–30% of the r.m.s. velocity levels for the
experiments considered.

5. Discussion and concluding remarks

Laboratory experiments were conducted on boundary-induced turbulence in a
homogeneous fluid in the presence of background rotation. The turbulence was
generated by a vertically oscillating shaft, and its statistics were shown to be
approximately vertically independent over a major portion of the test cell. The
turbulence intensities were found to increase linearly with Sω, and decrease with
increasing radial distance. Near the shaft, rotation does not affect the turbulence
structure, i.e. the turbulence characteristics are the same for both the rotating and the
non-rotating experiments. The Rossby number in the immediate vicinity of the shaft
is estimated as Ro¯ u}fdC 10, with uC 5 cm s−", fC 1.0 s−" and d¯ 0.5 cm; the
effects of rotation are thus not expected to be of leading-order importance in this
region. Furthermore, the turbulence is found to have the property u

r
E uθ Ew. For a

given flow configuration, the normalized r.m.s. velocity decays with the dimensionless
distance from the boundary as u}Sω£γ−", where γ¯ (r®r

!
)}d. In the mid-radius of

the tank, the turbulence is weak and the motion is characterized by random large-scale
anticyclonic and cyclonic vortices as well as an anticyclonic mean flow. Because the
flow velocities are small and the motion scale is large at the mid-radius, the Rossby
number of the large-scale motion is much smaller than unity : the flow is dominated by
rotation and tends to be horizontal.

An anticyclonic rectified (mean) flow Uθ was found to develop around the oscillating
shaft in the presence of rotation. This flow is approximately uniform within the
turbulent boundary layer for the range 3#γ# 7. The normalized turbulent boundary
layer thickness η}d was found to vary linearly with Sω}fd.

Consideration of the equations of motion indicates that no mean flow should be
expected for the non-rotating case. In the presence of rotation, however, those same
equations indicate that an anticyclonic flow in the vicinity of the cylinder shaft can be
initiated, grow and be maintained by Reynolds stress gradients which are essentially
independent of rotation. The laboratory observations are qualitatively in accord with
the arguments advanced. Although the generation of mean swirls by small-scale
turbulence in the presence of background rotation has been observed in several
previous experiments, to our knowledge this is the first experimental demonstration
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wherein it was shown that the gradients of Reynolds stresses can indeed generate an
organized mean circulation.

In the present study, a cylindrical geometry was chosen for geometrical simplicity to
exemplify one aspect of the complex problem of oceanic rectified flows and to elucidate
relevant physics. In general, mean flow generation by turbulence occurs in complex
geometries where non-zero horizontal turbulent gradients exist in the presence of
rotation. Examples may be coastlines and long shelf-breaks where the intensity of
boundary turbulence decreases with increasing distance from the boundaries. In the
case of a straight boundary, relations (6)–(8) still hold with the centrifugal force playing
an insignificant role. In such cases, a mean flow is expected to be generated along the
boundary. The direction of the mean flow should be such that the region of strong
turbulence is on the right-hand side, facing downstream. The present study suggests
that small-scale turbulent motions can convert energy into large-scale motions such as
rectified currents. This phenomenon can have applications to a range of environmental
problems, for example the long-term transport of passive scalars in coastal oceans.
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